Normalized Maximum Likelihood with Luckiness for Multivariate Normal Distributions

نویسنده

  • Kohei Miyaguchi
چکیده

The normalized maximum likelihood (NML) is one of the most important distribution in coding theory and statistics. NML is the unique solution (if exists) to the pointwise minimax regret problem. However, NML is not defined even for simple family of distributions such as the normal distributions. Since there does not exist any meaningful minimax-regret distribution for such case, it has been pointed out that NML with luckiness (LNML) can be employed as an alternative to NML. In this paper, we develop the closed forms of LNMLs for multivariate normal distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Mixture of Normal Mean-Variance of Lindley Distributions

‎Abstract: In this paper, a new mixture modelling using the normal mean-variance mixture of Lindley (NMVL) distribution has been considered. The proposed model is heavy-tailed and multimodal and can be used in dealing with asymmetric data in various theoretic and applied problems. We present a feasible computationally analytical EM algorithm for computing the maximum likelihood estimates. T...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Robust Fuzzy Classification Maximum Likelihood Clustering with Multivariate t-Distributions

Mixtures of distributions have been used as probability models for clustering data. Classification maximum likelihood (CML) procedure is a popular mixture of maximum likelihood approach to clustering. Yang (1993) extended CML to fuzzy CML (FCML) for a normal mixture model, called FCML-N. However, normal distributions are not robust for outliers. In general, t-distributions should be more robust...

متن کامل

Application of the complex multivariate normal distribution to crystallographic methods with insights into multiple isomorphous replacement phasing.

Probabilistic methods involving maximum-likelihood parameter estimation have become a powerful tool in computational crystallography. At the centre of these methods are the relevant probability distributions. Here, equations are developed based on the complex multivariate normal distribution that generalize the distributions currently used in maximum-likelihood model and heavy-atom refinement. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.01861  شماره 

صفحات  -

تاریخ انتشار 2017